

STELLA MARY'S COLLEGE OF ENGINEERING

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai and Accredited by NAAC, Accredited by NBA (Mech& CSE))
Aruthenganvilai, Kallukatti Junction Azhikal Post, Kanyakumari District-629202.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

EXPERIENTIAL LEARNING (Academic Year 2023 -2024/ODD)

Date:13/03/2024

Batc	Organization offered	Year	Sem	Title of the Training	Mapped Subject Code and Name	Name of the Student	Total No. of Students	Duration
h No.	SARK SOLAR POWER SYSTEM, Nagercoil	III	05	Renewable Energy Trainee	1. EE3006 – Power Quality 2. EE3007 – Smart Grids	1.Babu Hussain.S 2.Rijo.A 3.Asha.R 4.Epsibha.S 5.Manji.N 6.Rebisha.R 7.Renuka.K 8.Suyatha.M	8	13-01-2024 to 07-02-2024
2	SARK SOLAR POWER SYSTEM, Nagercoil	III	05	Renewable Energy Trainee	1. EE3006 – Power Quality 2. EE3007 – Smart Grids	1.Anbu Meshach P 2.Jaison S 3.Akash M 4.Aswin C 5.Manikandan A 6.Sutheesh S 7.Abithran M 8.Pravin S 9.Anand M P	ARTT SERVE	22-01-2024 to 03-03-2024
3	R J CONSULTANT & ENGINEERS, Palakad	III	05	Manufacturing and Installation of Electrical Machineries	EE3501 – Power System Analysis	1.Poovarasan E	1	10-07-2023 To 14-07-2023
4.	DALMIA WIND FARM, Aralvaimozhi	II	03	Internship	1. EE3501 – Power System Analysis 2. EE3006 – Power	2. R. Prakash	7	26-02-2024 To 02-03-2024

4 7		616		A 4 4 5 5 7 7 7	Quality	4. M S Shibiya		
	ः विदेश स्थान् दृष्ट	ICIE.	2 1 - 1 is		3. EE3007 - Smart Grids	5. A S Arshya 6. A Mahesh Kumar 7. S Michael Bai	the sy while the	
	NSIC Software Technology		T. T. SATE		EC3301 – Electron Devices and	2. Sakthivel M	3	26/02/2024 to
5.	Business Park,	II	03	Inplant Training	Circuits	3. Sahaya Jeffin A		01/03/2024

3100 24

HEAD OF THE DEPARTMENT
DEPT.OF ELECTRICAL & ELECTRORICS ENGINEERING
STELLA MARY'S COLLEGE OF ENGINEERING
ARUTHENGANVILAI, AZHIKAL P.O. - 629 202
KANYAKUMARI DISTRICT

STELLA MARY'S COLLEGE OF ENGINEERING

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai and Accredited by NAAC, Accredited by NBA (Mech& CSE))
Aruthenganvilai, Kallukatti Junction Azhikal Post, Kanyakumari District-629202.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

INTERNSHIP DETAILS (Academic Year 2023 -2024/EVEN)

Date:20/08/2024

Batc	Organization offered	Year	Sem	Title of the Training	Mapped Subject Code and Name	Name of the Student	Total No. of Students	Duration
h No.	Training Sub-Station Chemponvilai	ш	06	Implant Training	EE3601-Protection and Switchgear EE3602 – Power System Operation and Control	1. Suvatha M 2. Renuka K 3. Rebisha R 4. Epsibha S	4	22-07-2024 to 26-07-2024
2.	WIPRO INFRASTRUCTUR	IV	08	Trainee	EE8811 - Project Work	1. Alexpandian S	1	29-01-2024 Onwards
3.	E, Chennai Ashok Leyland, Ennore, Chennai -57	IV	08	Apprentice	EE8811 - Project Work	1. Abinesh A 2. Ramprakash M R 3. Sivasankar K 4. Siva S 5. Winclin Rijo J 6. Minish D 7. Prabin S 8. Aswin S 9. Rexon Leso J 10. Julius Niwin.L 11. Sahaya Lismen Rai.S 12. Kamesh. S 13. Naseem. A	13	January 2024 Onwards

HEAD OF THE DEPARTMENT
DEPT. OF ELECTRICAL & ELECTRONICS ENGINEERING
STELLA MARY'S COLLEGE OF ENGINEERING
ARUTHENGANVILAI, AZHIKAL P.O. - 629 202
KANYAKUMARI DISTRICT

EE3006

POWER QUALITY

3003

COURSE OBJECTIVES:

- To learn the basic definitions in Power Quality.
- To study the power quality issues in Single Phase and Three Phase Systems.
- To understand the principles of Power System Harmonics.
- To know the way to use DSTATCOM for Harmonic Mitigation.
- To learn the concepts related with Series Compensation.

UNIT I INTRODUCTION

(7+2 Skill) 9

Introduction - Characterization of Electric Power Quality: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation, Power acceptability curves - power quality problems: poor load power factor, Non-linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage -Power quality standards.

UNIT II ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM (7+2 Skill) 9

Single phase linear and non-linear loads - single phase sinusoidal, non-sinusoidal source supplying linear and nonlinear loads - three phase balanced system - three phase unbalanced system - three phase unbalanced and distorted source supplying non-linear loads - concept of power factor - three phase- three wire - three phase - four wire system.

MITIGATION OF POWER SYSTEM HARMONICS **UNIT III**

(7+2 Skill) 9

Introduction - Principle of Harmonic Filters - Series-Tuned Filters - Double Band-Pass Filters damped Filters - Detuned Filters - Active Filters - Power Converters - Harmonic Filter Design -Tuned Filter - Second-Order Damped Filter - Impedance Plots for Filter Banks - Impedance Plots for a Three-Branch 33 kV Filter.

LOAD COMPENSATION USING DSTATCOM **UNIT IV**

(7+2 Skill) 9

Compensating single - phase loads - Ideal three phase shunt compensator structure - generating reference currents using instantaneous PQ theory - Instantaneous symmetrical components theory -Generating reference currents when the source is unbalanced -Realization and control of DSTATCOM - DSTATCOM in Voltage control mode.

UNIT V SERIES COMPENSATION OF POWER DISTRIBUTION SYSTEM

(7+2 Skill) 9

Rectifier supported DVR - DC Capacitor supported DVR - DVR Structure - Voltage Restoration -Series Active Filter - Unified Power Quality Conditioner.

TOTAL: 45 PERIODS

HEAD OF THE DEPT. OF ELECTRICAL & ELECTRONICS ENGINEERING STELLA MARY'S COLLEGE OF ENGINEERING ARUTHENGANVILAI, AZHIKAL P.O. - 629 202 KANYAKUMARI DISTRICT

MAPPING OF COS WITH POS AND PSOS

COs	POs													PSOs .			
	P01	PO2	PO3	P04	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PS01	PSO2	PS03		
CO1	3	3	3	3	-	-	3	3	-	3	-	3	3	3	3		
CO2	3	3	3	3	-	-	3	3	-	3	-	3	3	3	3		
CO3	3	3	3	3	-	-	3	3	-	3	-	3	3	3	3		
CO4	3	3	3	3	-	-	3	3	-	3	. 4	. 3	3	. 3	. 3		
CO5	3	3	3	3	-	-	3	3	-	3	-	3	3	3	3		
Avg	3	3	3	3	-	-	3	3	24 C	3	1321 • 143	3	3	3	3		

EE3007

SMART GRID

LTPC 3003

COURSE OBJECTIVES:

To understand the evolution of Smart and Interconnected energy systems.

To understand the various challenges and benefits of smart grid and the national and international initiatives taken

To understand the concepts related with transmission and distribution in smart grid technologies.

To get an insight of the various smart measurement technologies.

To understand the various computing technologies for Smart Operation of the Grid.

INTRODUCTION **UNITI**

(7+2 SKILL) 9

Evolution of Energy Systems, Concept, Definitions and Need, Difference between Conventional & Smart Grid, Drivers, structures, functions, opportunities, challenges and benefits of Smart Grid, Basics of Micro grid, National and International Initiatives in Smart Grid.

SMART METERING UNIT II

(7+2 SKILL) 9

Introduction to Advanced Metering infrastructure (AMI) - drivers and benefits, AMI protocols, standards and initiatives, AMI needs in the smart grid, Real time management and control, Phasor Measurement Unit (PMU).

SMART GRID TECHNOLOGIES (Transmission) LINIT III

(7+2 SKILL) 9

Technology Drivers, Smart energy resources, Smart substations, Substation Automation, Feeder Automation, Transmission systems: EMS, Wide area Monitoring, Protection and control.

SMART GRID TECHNOLOGIES (Distribution) UNIT IV

(7+2 SKILL) 9

DMS, Volt/VAr control, Fault Detection, Isolation and service restoration, Outage management, High-Efficiency Distribution Transformers, Phase Shifting Transformers, Electric Vehicles...

HIGH PERFORMANCE COMPUTING FOR SMART GRID APPLICATIONS (7+2 SKILL) 9 **UNIT V** Local Area Network (LAN), House Area Network (HAN), Wide Area Network (WAN), Broadband over Power line (BPL), IP based Protocols, Computing technologies for Smart Grid applications (Web Service

130

HEAD OF DEPT. OF ELECTRICAL & ELECTRONICS ENGINEERING STELLA MARY'S COLLEGE OF ENGINEERING ARUTHENGANVILAI, AZHIKAL P.O. - 629 207 KANYAKUMARI DISTRICT

- 1. Morris Mano.M, 'Digital Logic and Computer Design', Prentice Hall of India, 3rd Edition, 2005.
- 2. Donald D.Givone, 'Digital Principles and Design', Tata McGraw Hill,1st Edition, 2003 3. Thomas L Floyd, 'Digital fundamentals', Pearson Education Limited, 11th Edition, 2018

REFERENCES:

- 1. Tocci R.J., Neal S. Widmer, 'Digital Systems: Principles and Applications', Pearson Education Asia, 12th Edition, 2017.
- Donald P Leach, Albert Paul Malvino, Goutam Sha, 'Digital Principles and Applications', Tata McGraw Hill, 7th Edition, 2010.

MAPPING OF COs WITH POS AND PSOS

COs	200,000				POs								PSOs		
	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PS01	PS02	PS03
CO1	3	3	3	.15%	3	3214 MIN	especial	1	1 - 11	24/24/2007/2009 2017/24/2007/2009	(8) - 英歌	阿特斯	3	- ,,,,,	1
CO2	3	3	3	100	3	10-33	14-15	101100	1. <u>-</u> 44.			ing \$1	3	- 07% - 5 Age	1
CO3	3	3	3	1	3		, all 1		and This	The same of the sa	- (1	.3	-	1 .
CO4	3	3	3	1	63	332	ğ (et.	Seedy 3	negota Usikana ng Palika Tanang	7 - 4	-,5	1	3	- 1 <u>-</u>	1
CO5	3	3	3	1	3	- 1/4	- <u> </u>	was 1	Janes - F. V	- #	- Wegen -	1	3	See as = "c"	1
Avg	3	3	3	1 4	3	-	100 - 100 M	1.	A	Jan 19 De	· · · · · · ·	1	3	73.	1

EC3301

LTPC 3003

COURSE OBJECTIVES:

- To understand the structure of basic electronic devices.
- To be exposed to active and passive circuit elements.
- To familiarize the operation and applications of transistor like BJT and FET.
- To explore the characteristics of amplifier gain and frequency response.
- To learn the required functionality of positive and negative feedback systems.

PN JUNCTION DEVICES **UNIT I**

PN junction diode -structure, operation and V-I characteristics, diffusion and transition capacitance -Clipping & Clamping circuits - Rectifiers - Half Wave and Full Wave Rectifier- Display devices- LED, Laser diodes, Zener diode characteristics- Zener diode Reverse characteristics - Zener diode as regulator.

UNIT II

TRANSISTORS AND THYRISTORS

9

& ELECTRONICS ENGINEERING DEPT. OF ELECTRICAL' STELLA MARY'S COLLEGE OF ENGINEERING ARUTHENGANVILAI, AZHIKAL P.O. - 629 202 KANYAKUMARI DISTRICT

MAPPING OF COS WITH POS AND PSOS

	POs														PSOs		
COS							1	200	200	PO10	P011	PO12	PS01	PS02	PS03		
COS	P01	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	-010	-	3	3	1	3		
CO1	2	1	2	3	-	-	<u> </u>	1.5			-	3	3	1	3		
	2	1	2	3	-	-	-	1.5					3	1	3		
CO2	2	1	2	3	-	-	-	1.5	-			3	3	1	3		
CO3		+-	2	3	-	-	-	1.5	-	•	-	3			3		
CO4	2	1-	2	1		-	-	1.5	-	-		3	3		3		
CO5	2	1 1	2	3			 	1.5	-	•	-	3	3				
Avg	2	1	2	3				10									

EE3501

POWER SYSTEM ANALYSIS

LTPC 3003

Impact knowledge on need for operational studies, andTo model the power system COURSE OBJECTIVES: under steady state operating condition.

To understand and apply iterative techniques for power flow analysis. To model of carry out short circuit studies for power system during symmetrical fault.

To model of carry out short circuit - studies during

To study about the various methods for analyzing power system stability

Need for system planning and operational studies - Power scenario in India - Power system components, Representation - Single line diagram - per unit quantities - p.u. impedance diagram - p.u. reactance diagram, Network graph Theory - Bus incidence matrices, Primitive parameters, Formation of bus admittance matrix - Direct inspection method - Singular Transformation method.

Bus classification - Formulation of Power Flow problem in polar coordinates - Power flow solution using Gauss Seidel method - Handling of Voltage controlled buses - Power Flow Solution by Newton Raphson method - Flow charts - Comparison of methods.

SYMMETRICAL FAULT ANALYSIS

Assumptions in short circuit analysis - Symmetrical short circuit analysis using Thevenin's theorem - Bus impedance matrix building algorithm (without mutual coupling) - Symmetrical fault analysis through bus impedance matrix - Post fault bus voltages - Fault level - Current limiting reactors.

UNSYMMETRICAL FAULT ANALYSIS

Symmetrical components - Sequence impedances - Sequence networks - Analysis of unsymmetrical faults at generator terminals: LG, LL and LLG - unsymmetrical fault occurring at any point in a power system.

> HEAD OF THE TMFNT DEPT. OF ELECTRICAL & ELECTRONICS ENGINEERING STELLA MARY'S COLLEGE OF ENGINEERING ARUTHENGANVILAI, AZHIKAL P.O. - 629 202 KANYAKUMARI DISTRICT

PROTECTION AND SWITCHGEAR

COURSE OBJECTIVES:

EE3601

- To understand the significance of protection, protection schemes and role of earthing.
- To study the characteristics, functions and application areas of various relays.
- To acquire practical knowledge about common faults in power system apparatus and applying suitable protective schemes.
- To understand the functioning of static relays and Numerical protection concepts.
- To understand the problems associated with circuit breaking and to discuss about various circuit breakers.

PROTECTION SCHEMES UNIT I

Significance and need for protective schemes - nature and causes of faults - types of faults Effects of faults - Zones of protection and essential qualities of protection - Types of Protection schemes - Power system Grounding and Methods of Grounding.

BASICS OF RELAYS

Operating principles of relays -Universal torque equation - R-X diagram -Electromagnetic Relays - Over current, Directional and non-directional, Distance, Differential, Negative sequence and Under frequency relays.

OVERVIEW OF EQUIPMENT PROTECTION

Current transformers and Potential transformers and their applications in protection schemes -Protection of transformer, generator, motor, bus bars and transmission line.

STATIC RELAYS AND NUMERICAL PROTECTION

Static relays - Phase, Amplitude Comparators - Synthesis of various relays using Static comparators - Block diagram of Numerical relays - Over current protection, transformer differential protection, and distantce protection of transmission lines.

q

Physics of arcing phenomenon and arc interruption - DC and AC circuit breaking - re-striking **UNIT V** voltage and recovery voltage - rate of rise of recovery voltage - current chopping - interruption of capacitive current - resistance switching - Types of circuit breakers - air blast, oil, SF6 and vacuum circuit breakers - comparison of different circuit breakers - HVDC Breaker.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon the successful completion of the course, students will have theability to:

- CO1: Understand and select proper protective scheme and type of earthing.
- CO2: Explain the operating principles of various relays.
- CO3: Suggest suitable protective scheme for the protection of various power system apparatus.
- CO4: Analyze the importance of static relays and numerical relays in power system protection.
- CO5: Summarize the merits and demerits and application areas of various circuit breakers.

DEPT. OF ELECTRICAL & ELECTRONICS ENGINEERING STELLA MARY'S COLLEGE OF ENGINEERING ARUTHENGANVILAI, AZHIKAL P.O. - 629 202 KANYAKUMARI DISTRICT

EE3602

POWER SYSTEM OPERATION AND CONTROL

3003

COURSE OBJECTIVES:

To impart knowledge on,

The significance of power system operation and control.

Real power- frequency interaction and design of power- frequency controller.

Reactive power-voltage interaction and the compensators for maintaining the voltage profile.

The generation scheduling and economic operation of power system.

SCADA and its application for real time operation and control of power systems.

INTRODUCTION

Power scenario in Indian grid - National and Regional load dispatching centres - Requirements of good power system - Necessity of voltage and frequency regulation - real power vs frequency and reactive power vs voltage control loops - System load variation, load curves - Load forecasting -Computational methods in load forecasting - Load shedding and Islanding - deregulation - Basics of electrical energy tariff.

REAL POWER FREQUENCY CONTROL

Basics of speed governing mechanisms and modelling - Speed regulation of two generators in parallel Load Frequency Control (LFC) of single area system - Static and dynamic analysis - LFC of two area system -Tie line modelling - Block diagram representation of two area system - Static and dynamic analysis - Tie line with frequency bias control - State variable model - Integration of economic dispatch control with LFC.

REACTIVE POWER - VOLTAGE CONTROL

Generation and absorption of reactive power - Basics of reactive power control - Automatic Voltage Regulator (AVR) - Brushless AC excitation system - Block diagram representation of AVR loop static and dynamic analysis – Stability compensation – Voltage drop in transmission line – Methods of reactive power injection - Tap changing transformer, SVC and STATCOM for voltage control.

ECONOMIC OPERATION OF POWER SYSTEM

Statement of economic dispatch problem - Input and output characteristics of thermal plant incremental cost curve - Optimal operation of thermal units without and with transmission losses (no derivation of transmission loss coefficients) - Lambda-iteration method - Base point and participation factors method. Statement of Unit Commitment (UC) problem - Constraints on UC problem - Solution of UC problem using priority list - Special aspects of short term and long-term hydrothermal scheduling problems.

COMPUTER AIDED CONTROL OF POWER SYSTEM

Need of computer control of power system – Concept of energy control centers and functions – PMU **UNIT V** system monitoring, Data acquisition and controls - System hardware configurations - SCADA and EMS functions - State estimation - Measurements and errors - Weighted least square estimation -Various operating states - State transition diagram.

TOTAL: 45 PERIODS

DEPT. OF ELECTRICAL & ELECTRONICS ENGINEERING STELLA MARY'S COLLEGE OF ENGINEERING ARUTHENGANVILAI, AZHIKAL P.O. - 629 202 KANYAKUMARI DISTRICT

Consumabilitys (Minimum of	5 Nos oach)	
8. Potermometer	5	
Step-down transformer Component data sheets to be provided	5	230V/12-0-12V
To be provided		

EE8811

PROJECT WORK

LTPC 0 0 20 10

OBJECTIVES:

•To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department. **TOTAL: 300 PERIODS**

OUTCOMES:

•On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

IC8651

ADVANCED CONTROL SYSTEM

LTPC 2203

OBJECTIVES:

To provide knowledge on design state feedback control and state observer.

To provide knowledge in phase plane analysis.

To give basic knowledge in describing function analysis. iii.

To study the design of optimal controller. ív.

To study the design of optimal estimator including Kalman Filter V.

STATE VARIABLE ANALYSIS Introduction- concepts of state variables and state model-State model for linear continuous time systems, Diagonalisation- solution of state equations- Concepts of controllability and observability.

STATE VARIABLE DESIGN

Introduction to state model: Effect of state feedback - Pole placement design: Necessary and sufficient condition for arbitrary pole placement, State regulator design Design of state observers-Separation principle- Design of servo systems: State feedback with integral control.

HEAD OF THE DEPT. OF ELECTRICAL & ELECTRONICS ENGINEERING STELLA MARY'S COLLEGE OF ENGINEERING ARUTHENGANVILAI, AZHIKAL P.O. - 629 202 KANYAKUMARI DISTRICT