ANNA UNIVERSITY, CHENNAI NON - AUTONOMOUS COLLEGES AFFILIATED ANNA UNIVERSITY M.E. COMPUTER SCIENCE AND ENGINEERING REGULATIONS – 2021 CHOICE BASED CREDIT SYSTEM

1. PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

- Develop proficiency as a computer science engineer with an ability to solve a wide range of computational problems and have sustainable development in industry or any other work environment.
- Analyze and adapt quickly to new environments and technologies, gather new information, and work on emerging technologies to solve multidisciplinary engineering problems.
- III. Possess the ability to think analytically and logically to understand technical problems with computational systems for a lifelong learning which leads to pursuing research.
- IV. Adopt ethical practices to collaborate with team members and team leaders to build technology with cutting-edge technical solutions for computing systems
- V. Strongly focus on design thinking and critical analysis to create innovative products and become entrepreneurs.

2. PROGRAM OUTCOMES (POs):

- 1. An ability to independently carry out research / investigation and development work to solve practical problems.
- 2. An ability to write and present a substantial technical report/document.
- 3. Students should be able to demonstrate a degree of mastery over the area of Computer Science and Engineering.
- 4. Efficiently design, build and develop system application software for distributed and centralized computing environments in varying domains and platforms.
- 5. Understand the working of current Industry trends, the new hardware architectures, the software components and design solutions for real world problems by Communicating and effectively working with professionals in various engineering fields and pursue research orientation for a lifelong professional development in computer and automation arenas.
- 6. Model a computer based automation system and design algorithms that explore the understanding of the tradeoffs involved in digital transformation.

PEO/PO Mapping:

				POs		
PEO	PO1	PO2	PO3	PO4	PO5	PO6
I.	1	2	3	4	5	6
II.	3	2	3	3	3	3
III.	3	3	3	3	2	3
IV.	3	3	2	3	3	2
V.	1	2	3	2	2	2

Contribution 1: Reasonable 2: Significant 3: Strong

MAPPING OF COURSE OUTCOMES AND PROGRAMME OUTCOMES

			COURSE NAME	PO1	PO2	PO3	PO4	PO5	P06
		MA4151	Applied Probability and Statistics for Computer Science Engineers	2.00	1.67	2.00	2.00	2.00	2.00
		RM4151	Research Methodology and IPR	3.00	2.00	2.00	1.67	1.20	2.00
	- R	CP4151	Advanced Data Structures and Algorithms	3.00	2.00	1.25	1.67	1.67	2.00
	STE	CP4152	Database Practices	2.40	2.00	1.50	1.60	1.00	1.20
	SEMESTER	CP4153	Network Technologies	1.00	2.80	2.20	1.75	1.50	1.50
	0)	CP4154	Principles of Programming Languages	1.00	1.67	1.00	1.00	1.50	2.00
YEAR		CP4161	Advanced Data Structures and Algorithms Laboratory	1.00	1.50	1.75	1.40	2.00	1.00
		CP4291	Internet of Things	1.60	1.80	1.60	1.40	2.00	2.20
	SEMESTER II	CP4292	Multicore Architecture and Programming	1.80	1.00	1.50	1.25	1.60	2.20
		CP4252	Machine Learning	1.80	2.20	1.25	1.75	1.00	2.20
		SE4151	Advanced Software Engineering	2	2.75	2	2.4	2.67	2
	S	CP4211	Term Paper Writing and seminar						
		CP4212	Software Engineering Laboratory	2.5	2.5	2.25	2.5	2	2.34
	SEMESTER III	CP4391	Security Practices	1.50	1.67	1.60	1.60	1.80	2.40
YEAR II	SEMESTER IV	CP4411	Project Work II PROGRESS THROUGH KN	OWL	EDG	S			
	S								

PROFESSIONAL ELECTIVE COURSES [PEC]

9	S. CODE											
NO.	CODE	COURSE TITLE	PO1	PO2	PO3	PO4	PO5	PO6				
1.	MP4092	Human Computer Interaction	2	2.75	2	2.4	2.67	2				
2.	MP4251	Cloud Computing Technologies	2.6	2.5	2	2	1.5	2				
3.	BD4151	Foundations of Data Science	1.75	1.5	2.7	3	2.5	2.5				
4.	MP4152	Wireless Communications	2.5	2.7	2.7	2	3	2.75				
5.	SE4071	Agile Methodologies	2.2	2	2.3	2.5	2.2	3				
6.	CP4095	Performance Analysis of Computer Systems	1.6	1.75	2.2	1.33	2	1				
7.	CP4001	Advanced Operating System	1.25	1.75	2.33	2	1.5	2				
8.	MU4251	Digital Image Processing	2.4	2.3	2.5	2.4	2.3	3				
9	BD4071	High Performance Computing for Big Data	1.75	1.5	2	2	2.25	3				
10.	CP4093	Information Retrieval Techniques	1.6	1.6	1.8	2.6	2.2	2.4				
11.	CP4096	Software Quality Assurance	2.2	1.8	1.8	2.8	1.6	2.4				
12.	CP4091	Autonomous Systems	1.8	1.5	2.25	2	2	2				
13.	CP4097	Web Analytics	2.2	2	3	1.6	1.8	1.4				
14.	MP4091	Cognitive Computing	1.5	2.3	2	1.5	2	1.5				
15.	AP4093	Quantum Computing	1.75	1.7	2.4	2	2	2.73				
16.	BD4251	Big Data Mining and Analytics	1.5	3	2	2	2.8	2.8				
17.	CP4094	Mobile and Pervasive Computing	1.8	2.5	1.6	1.8	1.6	2				
18.	MP4094	Web Services and API Design	1	3	2.4	3	1	<mark>2</mark>				
19.	CP4092	Data Visualization Techniques	2.2	1	2.4	2.4	1.4	1.6				
20.	IF4091	Compiler Optimization Techniques	2.6	2.6	2.8	3	2.5	2.6				
21.	CP4002	Formal Models of Software Systems	2	1.4	2.33	2.67	1.8	3				
22.	AP4094	Robotics	1.2	2.3	3	2.7	2.2	2				
23.	ML4291	Natural Language Processing	1.75	2	2.4	2.6	1	3				
24.	IF4093	GPU Computing	3	2	2.5	2.5	2.5	3				
25.	IF4073	Devops and Microservices	3	2	1.5	2	2.6	3				
26.	MP4292	Mobile Application Development	3	1.6	1.75	2.8	3	2.25				
27.	(IF4071)	Deep Learning	2	2	1.6	3	2.6	2.6				
28.	CP4072	Blockchain Technologies	2	1	2.5	2.25	2	2				
29.	SE4073	Embedded Software Development	1.3	2	2	2	2.25	2				
30.	IF4291	Full Stack Web Application Development	2.33	3	1.75	3	3	3				
31.	CP4071	Bioinformatics	1	1.6	1.5	1.67	2	2.6				
32.	MP4291	Cyber Physical Systems	2.3	2.5	2.6	1.7	1.7	1.7				
33.	MU4291	Mixed Reality	3	1	3	1	1	2				

ANNA UNIVERSITY, CHENNAI NON - AUTONOMOUS COLLEGES AFFILIATED ANNA UNIVERSITY M.E. COMPUTER SCIENCE AND ENGINEERING

REGULATIONS – 2021

CHOICE BASED CREDIT SYSTEM I TO IV SEMESTERS CURRICULA AND SYLLABI SEMESTER I

S. NO.	COURSE	COURSE TITLE	CATE- GORY		WEE	S PER K	CONTACT	CREDITS
	0022		oo.t.	L	Т	Р	PERIODS	
THEC	ORY							
1.	MA4151	Applied Probability and Statistics for Computer Science Engineers	FC	3	1	0	4	4
2.	RM4151	Research Methodology and IPR	RMC	2	0	0	2	2
3.	CP4151	Advanced Data Structures and Algorithms	PCC	3	0	0	3	3
4.	CP4152	Database Practices	PCC	3	0	2	5	4
5.	CP4153	Network Technologies	PCC	3	0	0	3	3
6.	CP4154	Principles of Programming Languages	PCC	3	0	0	3	3
7.		Audit Course – I*	AC	2	0	0	2	0
PRAC	CTICALS							
8.	CP4161	Advanced Data Structures and Algorithms Laboratory	PCC	0	0	4	4	2
		77	TOTAL	19	1	6	26	21

^{*}Audit course is optional

SEMESTER II

S. NO.	COURSE	COURSE TITLE	CATE- GORY	PERIODS PER WEEK		TOTAL CONTACT PERIODS	CREDITS		
THEC	DRY								
1. CP4291 Internet of Things PCC 3 0 2 5 4									
2.	CP4292	Multicore Architecture and Programming	PCC	3	0	2	5	4	
3.	CP4252	Machine Learning	PCC	3	0	2	5	4	
4.	SE4151	Advanced Software Engineering	PCC	3	0	0	3	3	
5.		Professional Elective I	PEC	3	0	0	3	3	
6.		Professional Elective II	PEC	3	0	0	3	3	
7.		Audit Course – II*	AC	2	0	0	2	0	
PRAC	PRACTICALS								
8.	CP4211	Term Paper Writing and seminar	EEC	0	0	2	2	1	
9.	CP4212	Software Engineering Laboratory	PCC	0	0	2	2	1	
	•	•	TOTAL	20	0	10	30	23	

^{*}Audit course is optional

SEMESTER III

S. NO.	COURSE	COURSE TITLE	CATE- GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
110.	OODL			L	Т	Р	PERIODS	
THE	DRY							
1.	CP4391	Security Practices	PCC	3	0	0	3	3
2.		Professional Elective III	PEC	3	0	0	3	3
3.		Professional Elective IV	PEC	3	0	2	5	4
4.		Open Elective	OEC	3	0	0	3	3
PRAC	PRACTICALS							
5.	CP4311	Project Work I	EEC	0	0	12	12	6
			TOTAL	12	0	14	26	19

SEMESTER IV

S. NO.	COURSE	COURSE TITLE	CATE- GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
110.	JOBE	(4)	JOKI	L	Т	Р	PERIODS	
PRA	CTICALS	75-/				1	-	
1.	CP4411	Project Work II	EEC	0	0	24	24	12
			TOTAL	0	0	24	24	12

TOTAL NO. OF CREDITS: 75

PROFESSIONAL ELECTIVES SEMESTER II, ELECTIVE I

S. NO.	COURSE	COURSE TITLE CAT			PERIODS PER WEEK		TOTAL CONTACT	CREDITS
110.	JOBE		JOKT	L	T	Р	PERIODS	
1.	MP4092	Human Computer Interaction	PEC	3	0	0	3	3
2.	MP4251	Cloud Computing Technologies	PEC	3	0	0	3	3
3.	BD4151	Foundations of Data Science	PEC	3	0	0	3	3
4.	MP4152	Wireless Communications	PEC	3	0	0	3	3
5.	SE4071	Agile Methodologies	PEC	3	0	0	3	3
6.	CP4095	Performance Analysis of Computer Systems	PEC	3	0	0	3	3
7.	CP4001	Advanced Operating System	PEC	3	0	0	3	3
8.	MU4251	Digital Image Processing	PEC	3	0	0	3	3

SEMESTER II, ELECTIVE II

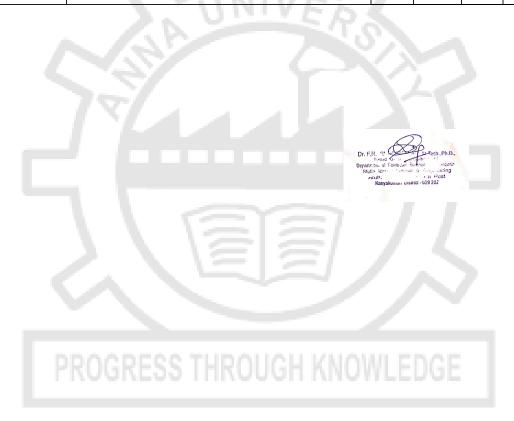
S. NO.	COURSE	COURSE TITLE	CATE- GORY		PERIODS PER WEEK		TOTAL CONTACT	CREDITS
1.0.	JODE		COICI	L	Т	Р	PERIODS	
1.	BD4071	High Performance Computing for Big Data	PEC	3	0	0	3	3
2.	CP4093	Information Retrieval Techniques	PEC	3	0	0	3	3
3.	CP4096	Software Quality Assurance	PEC	3	0	0	3	3
4.	CP4091	Autonomous Systems	PEC	3	0	0	3	3
5.	CP4097	Web Analytics	PEC	3	0	0	3	3
6.	MP4091	Cognitive Computing	PEC	3	0	0	3	3
7.	AP4093	Quantum Computing	PEC	3	0	0	3	3
8.	BD4251	Big Data Mining and Analytics	PEC	3	0	0	3	3

SEMESTER III, ELECTIVE III

S. NO.	COURSE	COURSE TITLE	CATE- GORY	PFR \		EEK	TOTAL CONTACT PERIODS	CREDITS
1.	CP4094	Mobile and Pervasive Computing	PEC	3	0	P 0	3	3
2.	MP4094	Web Services and API Design	PEC	3	0	0	3	3
3.	CP4092	Data Visualization Techniques	PEC	3	0	0	3	3
4.	IF4091	Compiler Optimization Techniques	PEC	3	0	0	3	3
5.	CP4002	Formal Models of Software Systems	PEC	3	0	0	3	3
6.	AP4094	Robotics	PEC	3	0	0	3	3
7.	ML4291	Natural Language Processing	PEC	2	0	2	4	3
8.	IF4093	GPU Computing	PEC	3	0	0	3	3

PROGRESEMESTER III, ELECTIVE IV

S. NO.	COURSE	COURSE TITLE	CATE- GORY		PERIODS PER WEEK		TOTAL CONTACT	CREDITS
140.	CODE		GOIXT	L	T	Р	PERIODS	
1.	IF4073	Devops and Microservices	PEC	3	0	2	5	4
2.	MP4292	Mobile Application Development	PEC	3	0	2	5	4
3.	(IF4071)	Deep Learning	PEC	3	0	2	<u>5</u>	<mark>4</mark>)
4.	CP4072	Blockchain Technologies	PEC	3	0	2	5	4
5.	SE4073	Embedded Software Development	PEC	3	0	2	5	4
6.	IF4291	Full Stack Web Application Development	PEC	3	0	2	5	4



Ī	7.	CP4071	Bioinformatics	PEC	3	0	2	5	4
	8.	MP4291	Cyber Physical Systems	PEC	3	0	2	5	4
Ī	9.	MU4291	Mixed Reality	PEC	3	0	2	5	4

AUDIT COURSES (AC)

Registration for any of these courses is optional to students

SL. NO.	COURSE	COURSE TITLE	PER	RIODS I WEEK	CREDITS	
NO.	CODE		L	Т	Р	CKEDIIS
1.	AX4091	English for Research Paper Writing	2	0	0	0
2.	AX4092	Disaster Management	2	0	0	0
3.	AX4093	Constitution of India	2	0	0	0
4.	AX4094	நற்றமிழ் இலக்கியம்	2	0	0	0

LIST OF OPEN ELECTIVES FOR PG PROGRAMMES

SL.	COURSE	COURSE TITLE	PEF	RIODS I		ODEDITO
NO.	CODE		L	Т	Р	CREDITS
1.	OCE431	Integrated Water Resources Management	3	0	0	3
2.	OCE432	Water, Sanitation and Health	3	0	0	3
3.	OCE433	Principles of Sustainable Development		0	0	3
4.	OCE434	Environmental Impact Assessment	3	0	0	3
5.	OME431	Vibration and Noise Control Strategies	3	0	0	3
6.	OME432	Energy Conservation and Management in Domestic Sectors	3	0	0	3
7.	OME433	Additive Manufacturing	3	0	0	3
8.	OME434	Electric Vehicle Technology	3	0	0	3
9.	OME435	New Product Development		0	0	3
10.	OBA431	Sustainable Management	3	0	0	3
11.	OBA432	Micro and Small Business Management	3	0	0	3
12.	OBA433	Intellectual Property Rights	3	0	0	3
13.	OBA434	Ethical Management	3	0	0	3
14.	ET4251	IoT for Smart Systems	3	0	0	3
15.	ET4072	Machine Learning and Deep Learning	3	0	0	3
16.	PX4012	Renewable Energy Technology	3	0	0	3
17.	PS4093	Smart Grid	3	0	0	3
18.	DS4015	Big Data Analytics	3	0	0	3
19.	NC4201	Internet of Things and Cloud	3	0	0	3
20.	MX4073	Medical Robotics	3	0	0	3
21.	VE4202	Embedded Automation	3	0	0	3
22.	CX4016	Environmental Sustainability	3	0	0	3
23.	TX4092	Textile Reinforced Composites		0	0	3
24.	NT4002	Nanocomposite Materials	3	0	0	3
25.	BY4016	IPR, Biosafety and Entrepreneurship	3	0	0	3

PROGRESS THROUGH KNOWLEDGE

Dr. F.R. St. Francis of the Ph.D. Presso Group and Tourism Studies Agency Company Studies Agency Company and Post Kanyakunani visinet - 529 202

FOUNDATION COURSES (FC)

S.	COURSE	COURSE TITLE	PERIO	ODS PER	WEEK	CREDITS	Sem
NO	CODE	COOKSE TITEE	Lecture	Tutorial	Practical	CILLDITS	
1.	MA4153	Advanced Mathematical	3	1	0	4	1
		Methods		'	Ü	•	'

PROFESSIONAL CORE COURSES (PCC)

S.	COURSE	COURSE TITLE	PERI	ODS PER	WEEK	CREDITS	SEM 1
NO	CODE	COOKSE TITLE	Lecture	Tutorial	Practical	CKEDIIS	SEIVI I
1.	CP4151	Advanced Data Structures and Algorithms	3	0	0	3	1
2.	CP4152	Database Practices	3	0	2	4	I
3.	CP4153	Network Technologies	3	0	0	3	I
4.	CP4154	Principles of Programming	3	0	0	3	I
5.	CP4161	Advanced Data Structures and Algorithms Laboratory	0	0	4	2	I
6.	CP4291	Internet of Things	3	0	2	4	=
7.	CP4292	Multicore Architecture and Programming	3	0	2	4	II
8.	CP4252	Machine Learning	3	0	2	4	П
9.	SE4151	Advanced Software Engineering	3	0	0	3	II
10.	CP4212	Software Engineering Laboratory	0	0	2	1	II
11.	CP4391	Security Practices	3	0	0	3	Ш

RESEARCH METHODOLOGY AND IPR COURSES (RMC)

S.	COURSE	COURSE TITLE	PERIO	DS PER	WEEK	0DEDIT0	SEMESTER
NO	CODE	COURSE TITLE	Lecture	Tutorial	Practical	CREDITS	
1.	RM4151	Research Methodology and IPR	2	0	0	2	_

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

S.	COURSE	COURSE TITLE	PERIC	DS PER	WEEK	CDEDITO	SEMESTER				
NO CODE		COURSE TITLE	Lecture	Tutorial	Practical	CKEDIIS	SEIVIESTER				
1.	CP4211	Technical Seminar	0	0	2	1	1				
2.	CP4311	Project Work I	0	0	12	6	3				
3.	CP4411	Project Work II	0	0	24	12	4				

SUMMARY

	NAME OF THE PROGRAENGINEERING	NAME OF THE PROGRAMME: M.E COMPUTER SCIENCE AND ENGINEERING									
SI. No.	SUBJECT AREA		_	EDITS EMESTE	R	CREDITS TOTAL					
		ı	II	Ш	IV						
1.	FC	04	00	00	00	04					
2.	PCC	15	16	03	00	34					
3.	PEC	00	06	07	00	13					
4.	RMC	02	00	00	00	02					
5.	OEC	00	00	03	00	03					
6.	EEC	00	01	06	12	19					
7.	Non Credit/Audit Course	✓	✓	00	00						
8.	TOTAL CREDIT	21	23	19	12	75					

Dr. F.R. St. Comban School School Study Merico Comban School School Study Merico Comban School School School Merico Comban School Schoo

CO4: Utilize rapid prototyping techniques to design and develop sophisticated mobile interfaces **CO5:** Create interactive applications in android using databases with multiple activities including audio, video and notifications and deploy them in marketplace

TOTAL: 75 PERIODS

REFERENCES

- 1. Lauren Darcey and Shane Conder, "Android Wireless Application Development", Pearson Education, 2nd ed. (2011)
- 2. Google Developer Training, "Android Developer Fundamentals Course Concept Reference", Google Developer Training Team, 2017.
- 3. Prasanth Kumar Pattnaik, Rajib Mall, "Fundamentals of Mobile Computing", PHI Learning Pvt. Ltd, New Delhi-2012
- 4. Reto Meier, "Professional Android 2 Application Development", Wiley India Pvt Ltd, 2010
- 5. Mark L Murphy, "Beginning Android", Wiley India Pvt Ltd, 2009
- 6. Dawn Griffiths and David Griffiths, "Head First Android Development", 1st Edition, O"Reilly SPD Publishers, 2015. ISBN-13: 978-9352131341
- 7. Erik Hellman, "Android Programming Pushing the Limits", 1st Edition, Wiley India Pvt Ltd, 2014. ISBN-13: 978-8126547197.
- 8. Bill Phillips, Chris Stewart and Kristin Marsicano, "Android Programming: The Big Nerd Ranch Guide", 4th Edition, Big Nerd Ranch Guides, 2019. ISBN-13: 978-0134706054

CO-PO Mapping

СО		POs								
	PO1	PO2	PO3	PO4	PO5	PO6				
1	3	2		3	3	-				
2	3	1	=1 3	3	/ /	2				
3	3	2	3	3	3	1				
4	3	1	1	2	\sim	3				
5	3	2	2	3	3	3				
Avg	3	1.6	1.75	2.8	3	2.25				

IF4071

DEEP LEARNING

L T PC

3 0 2 4

COURSE OBJECTIVES:

- Develop and Train Deep Neural Networks.
- Develop a CNN, R-CNN, Fast R-CNN, Faster-R-CNN, Mask-RCNN for detection and recognition
- Build and train RNNs, work with NLP and Word Embeddings
- The internal structure of LSTM and GRU and the differences between them
- The Auto Encoders for Image Processing

Dr. E.R. 31 Detech. Ph.D. Depation of Company Substitution of Student Student

UNIT I DEEP LEARNING CONCEPTS

6

Fundamentals about Deep Learning. Perception Learning Algorithms. Probabilistic modelling. Early Neural Networks. How Deep Learning different from Machine Learning. Scalars. Vectors. Matrixes, Higher Dimensional Tensors. Manipulating Tensors. Vector Data. Time Series Data. Image Data. Video Data.

UNIT II NEURAL NETWORKS

9

About Neural Network. Building Blocks of Neural Network. Optimizers. Activation Functions. Loss Functions. Data Pre-processing for neural networks, Feature Engineering. Overfitting and Underfitting. Hyperparameters.

UNIT III CONVOLUTIONAL NEURAL NETWORK

10

About CNN. Linear Time Invariant. Image Processing Filtering. Building a convolutional neural network. Input Layers, Convolution Layers. Pooling Layers. Dense Layers. Backpropagation Through the Convolutional Layer. Filters and Feature Maps. Backpropagation Through the Pooling Layers. Dropout Layers and Regularization. Batch Normalization. Various Activation Functions. Various Optimizers. LeNet, AlexNet, VGG16, ResNet. Transfer Learning with Image Data. Transfer Learning using Inception Oxford VGG Model, Google Inception Model, Microsoft ResNet Model. R-CNN, Fast R-CNN, Faster R-CNN, Mask-RCNN, YOLO

UNIT VI NATURAL LANGUAGE PROCESSING USING RNN

10

About NLP & its Toolkits. Language Modeling . Vector Space Model (VSM). Continuous Bag of Words (CBOW). Skip-Gram Model for Word Embedding. Part of Speech (PoS) Global Co-occurrence Statistics—based Word Vectors. Transfer Learning. Word2Vec. Global Vectors for Word Representation GloVe. Backpropagation Through Time. Bidirectional RNNs (BRNN) . Long Short Term Memory (LSTM). Bi-directional LSTM. Sequence-to-Sequence Models (Seq2Seq). Gated recurrent unit GRU.

UNIT V DEEP REINFORCEMENT & UNSUPERVISED LEARNING

10

About Deep Reinforcement Learning. Q-Learning. Deep Q-Network (DQN). Policy Gradient Methods. Actor-Critic Algorithm. About Autoencoding. Convolutional Auto Encoding. Variational Auto Encoding. Generative Adversarial Networks. Autoencoders for Feature Extraction. Auto Encoders for Classification. Denoising Autoencoders. Sparse Autoencoders

LIST OF EXPERIMENTS:

30

- 1. Feature Selection from Video and Image Data
- 2. Image and video recognition
- 3. Image Colorization
- 4. Aspect Oriented Topic Detection & Sentiment Analysis
- 5. Object Detection using Autoencoder

COURSE OUTCOMES:

CO1: Feature Extraction from Image and Video Data

CO2: Implement Image Segmentation and Instance Segmentation in Images

CO3: Implement image recognition and image classification using a pretrained network (Transfer Learning)

CO4: Traffic Information analysis using Twitter Data

CO5: Autoencoder for Classification & Feature Extraction

TOTAL: 45+30=75 PERIODS

REFERENCES

- Deep Learning A Practitioner's Approach Josh Patterson and Adam Gibson O'Reilly Media, Inc.2017
- 2. Learn Keras for Deep Neural Networks, Jojo Moolayil, Apress, 2018
- 3. Deep Learning Projects Using TensorFlow 2, Vinita Silaparasetty, Apress, 2020
- 4. Deep Learning with Python, FRANÇOIS CHOLLET, MANNING SHELTER ISLAND, 2017
- 5. Pro Deep Learning with TensorFlow, Santanu Pattanayak, Apress, 2017

CO-PO Mapping

СО		POs								
	PO1	PO2	PO3	PO4	PO5	PO6				
1	2	2		3	3	3				
2	2	2	2	3	3	2				
3	2	2	2	3	2	3				
4	2	2	1	3	3	3				
5	2	2	- (3	2	2				
Avg	2	2	1.6	3	2.6	2.6				

CP4072 BLOCKCHAIN TECHNOLOGIES L T P C 3 0 2 4

COURSE OBJECTIVES:

- This course is intended to study the basics of Blockchain technology.
- During this course the learner will explore various aspects of Blockchain technology like application in various domains.
- By implementing, learners will have idea about private and public Blockchain, and smart contract.

UNIT I INTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN

9

Introduction to Blockchain, Blockchain Technology Mechanisms & Networks, Blockchain Origins, Objective of Blockchain, Blockchain Challenges, Transactions and Blocks, P2P Systems, Keys as Identity, Digital Signatures, Hashing, and public key cryptosystems, private vs. public Blockchain.

UNIT II BITCOIN AND CRYPTOCURRENCY

9

Introduction to Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining Developments, Bitcoin Wallets, Decentralization and Hard Forks, Ethereum Virtual Machine (EVM), Merkle Tree, Double-Spend Problem, Blockchain and Digital Currency, Transactional Blocks, Impact of Blockchain Technology on Cryptocurrency.

UNIT III INTRODUCTION TO ETHEREUM

9

Introduction to Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum Accounts, , Transactions, Receiving Ethers, Smart Contracts.

UNIT V R LANGUAGE

9

Overview, Programming structures: Control statements -Operators -Functions -Environment and scope issues -Recursion -Replacement functions, R data structures: Vectors -Matrices and arrays - Lists -Data frames -Classes, Input/output, String manipulations

COURSE OUTCOMES:

CO1:understand the basics of big data analytics

CO2: Ability to use Hadoop, Map Reduce Framework.

CO3: Ability to identify the areas for applying big data analytics for increasing the business outcome.

CO4:gain knowledge on R language

CO5: Contextually integrate and correlate large amounts of information to gain faster insights.

TOTAL:45 PERIODS

REFERENCE:

- 1. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 2. Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 3rd edition 2020.
- 3. Norman Matloff, The Art of R Programming: A Tour of Statistical Software Design, No Starch Press, USA, 2011.
- 4. Bill Franks, Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics, John Wiley & sons, 2012.
- 5. Glenn J. Myatt, Making Sense of Data, John Wiley & Sons, 2007.

NC4201 INTERNET OF THINGS AND CLOUD

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand Smart Objects and IoT Architectures
- To learn about various IOT-related protocols
- To build simple IoT Systems using Arduino and Raspberry Pi.
- To understand data analytics and cloud in the context of IoT
- To develop IoT infrastructure for popular applications

UNIT I FUNDAMENTALS OF IOT

9

Introduction to IoT – IoT definition – Characteristics – IoT Complete Architectural Stack – IoT enabling Technologies – IoT Challenges. Sensors and Hardware for IoT – Hardware Platforms – Arduino, Raspberry Pi, Node MCU. A Case study with any one of the boards and data acquisition from sensors.

UNIT II PROTOCOLS FOR IOT

9

Infrastructure protocol (IPV4/V6/RPL), Identification (URIs), Transport (Wifi, Lifi, BLE), Discovery, Data Protocols, Device Management Protocols. – A Case Study with MQTT/CoAP usage-IoT privacy, security and vulnerability solutions.

UNIT III CASE STUDIES/INDUSTRIAL APPLICATIONS

9

Case studies with architectural analysis: IoT applications – Smart City – Smart Water – Smart Agriculture – Smart Energy – Smart Healthcare – Smart Transportation – Smart Retail – Smart waste management.

UNIT IV CLOUD COMPUTING INTRODUCTION

9

Introduction to Cloud Computing - Service Model - Deployment Model- Virtualization Concepts - Cloud Platforms - Amazon AWS - Microsoft Azure - Google APIs.

UNIT V IOT AND CLOUD

9

IoT and the Cloud - Role of Cloud Computing in IoT - AWS Components - S3 - Lambda - AWS IoT Core - Connecting a web application to AWS IoT using MQTT- AWS IoT Examples. Security Concerns, Risk Issues, and Legal Aspects of Cloud Computing- Cloud Data Security

TOTAL:45 PERIODS

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1: Understand the various concept of the IoT and their technologies..

CO2: Develop IoT application using different hardware platforms

CO3: Implement the various IoT Protocols

CO4: Understand the basic principles of cloud computing.

CO5: Develop and deploy the IoT application into cloud environment

REFERENCES

- 1. "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru Raj and Anupama C. Raman ,CRC Press, 2017
- 2. Adrian McEwen, Designing the Internet of Things, Wiley, 2013.
- 3. EMC Education Services, "Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data", Wiley publishers, 2015.
- 4. Simon Walkowiak, "Big Data Analytics with R" PackT Publishers, 2016
- 5. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", Wiley Publishers, 2015.

MX4073

MEDICAL ROBOTICS

LT PC 3 0 0 3

COURSE OBJECTIVES:

- To explain the basic concepts of robots and types of robots
- To discuss the designing procedure of manipulators, actuators and grippers
- To impart knowledge on various types of sensors and power sources
- To explore various applications of Robots in Medicine
- To impart knowledge on wearable robots

UNIT I INTRODUCTION TO ROBOTICS

9

Introduction to Robotics, Overview of robot subsystems, Degrees of freedom, configurations and concept of workspace, Dynamic Stabilization

Sensors and Actuators

Sensors and controllers, Internal and external sensors, position, velocity and acceleration sensors, Proximity sensors, force sensors Pneumatic and hydraulic actuators, Stepper motor control circuits, End effectors, Various types of Grippers, PD and PID feedback actuator models

UNIT II MANIPULATORS & BASIC KINEMATICS

9

Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and pneumatic manipulator, Forward Kinematic Problems, Inverse Kinematic Problems, Solutions of Inverse

5	2		2	1	2	2
Avg	1.80	2.50	1.60	1.80	1.60	2.00

MP4094

WEB SERVICES AND API DESIGN

LTPC

3 0 0 3

COURSE OBJECTIVES:

- To learn the basics of Web service.
- To become familiar with the Web Services building blocks
- To learn to work with RESTful web services.
- To implement the RESTful web services.
- To understand resource oriented Architecture.

UNIT I INTRODUCTION TO WEB SERVICE

9

Overview – Web service-Architecture – Service-Oriented Architecture (SOA), Architecting Web Services: Web Services Technology Stack, Logical Architectural View, Deployment Architectural View, and Process Architectural View.

UNIT II WEB SERVICE BUILDING BLOCKS

9

Introduction to SOAP SOAP Syntax- Sending SOAP Messages - SOAP Implementations - Introduction to WSDL: WSDL Syntax - SOAP Binding - WSDL Implementations - Introduction to UDDI: The UDDI API - Implementations - The Future of UDDI

UNIT III RESTFUL WEB SERVICES

9

Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web -Leftover Terminology - Writing Web Service Clients: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers - JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL.

UNIT IV IMPLEMENTATION OF RESTFUL WEB SERVICES

9

Introducing the Simple Storage Service - Object-Oriented Design of S3 - Resources - HTTP Response Codes Resource- URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface — Spring Web Services — Spring MVC Components - Spring Web Flow - A Service Implementation using Spring Data REST.

UNIT V RESOURCE ORIENTED ARCHITECTURE

9

Resource- URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface- Designing Read-Only Resource-Oriented Services : Resource Design - Turning Requirements Into Read-Only Resources - Figure Out the Data Set- Split the Data Set into Resources- Name the Resources - Design Representation- Link the Resources to Each Other- The HTTP Response

COURSE OUTCOMES:

CO1: Explain how to write XML documents.

CO2: Apply the web service building blocks such as SOAP, WSDL and UDDI

CO3: Describe the RESTful web services.

Dr. E.R. 9 Department of Compare Student Post Kanyakunan unione Cargo Student Kanyakunan unione Cargo Student Cargo Carg

CO4: Implement the RESTful web service with Spring Boot MVC

CO5: Discuss Resource-oriented Architecture.

TOTAL: 45 PERIODS

REFERENCES

- 1. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007
- 2. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers, 2005.
- 3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015
- 4. Craig Walls, "Spring in Action, Fifth Edition", Manning Publications, 2018
- 5. Raja CSP Raman, Ludovic Dewailly, "Building A RESTful Web Service with Spring 5", Packt Publishing, 2018.
- 6. Bogunuva Mohanram Balachandar, "Restful Java Web Services, Third Edition: A pragmatic guide to designing and building RESTful APIs using Java", Ingram short title, 3rd Edition, 2017.
- 7. Mario-Leander Reimer, "Building RESTful Web Services with Java EE 8: Create modern RESTful web services with the Java EE 8 API", Packt publishing, 2018.

CO-PO Mapping

СО		POs							
	PO1	PO2	PO3	PO4	PO5	PO6			
1	1	3	3	1		-			
2	1	κ	3	3	1	2			
3	_	3	3		-				
4	1	1.5	2	3	1	2			
5	1	1. 1		<u> </u>	1	-			
Avg	1	3	2.4	3	AL)	2			

CP4092

DATA VISUALIZATION TECHNIQUES

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To develop skills to both design and critique visualizations.
- To introduce visual perception and core skills for visual analysis.
- To understand technological advancements of data visualization
- To understand various data visualization techniques
- To understand the methodologies used to visualize large data sets

UNIT I INTRODUCTION AND DATA FOUNDATION

9

Basics - Relationship between Visualization and Other Fields -The Visualization Process - Pseudo code Conventions - The Scatter plot. Data Foundation - Types of Data - Structure within and between Records - Data Preprocessing - Data Sets

CO4:Understand the classes of problems that can be expected to be solved well by quantum computers.

CO5: Simulate and analyze the characteristics of Quantum Computing Systems.

TOTAL: 45 PERIODS

REFERENCES:

- 1. John Gribbin, Computing with Quantum Cats: From Colossus to Qubits, 2021
- 2. William (Chuck) Easttom, Quantum Computing Fundamentals, 2021
- 3. Parag Lala, Quantum Computing, 2019
- 4. Eleanor Rieffel and Wolfgang Polak, QUANTUM COMPUTING A Gentle Introduction, 2011
- 5. Nielsen M. A., Quantum Computation and Quantum Information, Cambridge University Press.2002
- 6. Benenti G., Casati G. and Strini G., Principles of Quantum Computation and Information, Vol. I: Basic Concepts, Vol II: Basic Tools and Special Topics, World Scientific. 2004
- 7. Pittenger A. O., An Introduction to Quantum Computing Algorithms 2000

CO-PO Mapping

СО		POs							
	PO1	PO2	PO3	PO4	PO5	PO6			
1	135	2	3		4	-			
2	1	2	3		2	-			
3	į	1	3	2	3	2			
4	2	-	2	2	1	3			
5	3	1.1		2	3	3			
Avg	1.75	1.7	2.4	2	2	2.73			

BD4251

BIG DATA MINING AND ANALYTICS

LT PC 3 0 0 3

COURSE OBJECTIVES:

- To understand the computational approaches to Modeling, Feature Extraction
- To understand the need and application of Map Reduce
- To understand the various search algorithms applicable to Big Data
- To analyze and interpret streaming data
- To learn how to handle large data sets in main memory and learn the various clustering techniques applicable to Big Data

UNIT I DATA MINING AND LARGE SCALE FILES

9

Introduction to Statistical modeling – Machine Learning – Computational approaches to modeling – Summarization – Feature Extraction – Statistical Limits on Data Mining - Distributed File Systems – Map-reduce – Algorithms using Map Reduce – Efficiency of Cluster Computing Techniques.

Dr. E.R. 90 Process Ph.D. Process Ph.D. Process Ph.D. Process Process Process Process Process Process Process Process RangeAusten Control Congress Process RangeAusten Control Congress Process Proces

UNIT II SIMILAR ITEMS

9

Nearest Neighbor Search – Shingling of Documents – Similarity preserving summaries – Locality sensitive hashing for documents – Distance Measures – Theory of Locality Sensitive Functions – LSH Families – Methods for High Degree of Similarities.

UNIT III MINING DATA STREAMS

9

Stream Data Model – Sampling Data in the Stream – Filtering Streams – Counting Distance Elements in a Stream – Estimating Moments – Counting Ones in Window – Decaying Windows.

UNIT IV LINK ANALYSIS AND FREQUENT ITEMSETS

9

Page Rank – Efficient Computation - Topic Sensitive Page Rank – Link Spam – Market Basket Model – A-priori algorithm – Handling Larger Datasets in Main Memory – Limited Pass Algorithm – Counting Frequent Item sets.

UNIT V CLUSTERING

9

Introduction to Clustering Techniques – Hierarchical Clustering –Algorithms – K-Means – CURE – Clustering in Non – Euclidean Spaces – Streams and Parallelism – Case Study: Advertising on the Web – Recommendation Systems.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to

CO1: Design algorithms by employing Map Reduce technique for solving Big Data problems.

CO2: Design algorithms for Big Data by deciding on the apt Features set .

CO3: Design algorithms for handling petabytes of datasets

CO4: Design algorithms and propose solutions for Big Data by optimizing main memory consumption

CO5: Design solutions for problems in Big Data by suggesting appropriate clustering techniques.

REFERENCES:

- 1. Jure Leskovec, AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 3rd Edition, 2020.
- 2. Jiawei Han, MichelineKamber, Jian Pei, "Data Mining Concepts and Techniques", Morgan Kaufman Publications, Third Edition, 2012.
- 3. Ian H.Witten, Eibe Frank "Data Mining Practical Machine Learning Tools and Techniques", Morgan Kaufman Publications, Third Edition, 2011.
- 4. David Hand, HeikkiMannila and Padhraic Smyth, "Principles of Data Mining", MIT PRESS, 2001

WEB REFERENCES:

- 1. https://swayam.gov.in/nd2_arp19_ap60/preview
- 2. https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/106104189/lec1.pdf

ONLINE RESOURCES:

- https://examupdates.in/big-data-analytics/
- 2. https://www.tutorialspoint.com/big_data_analytics/index.htm
- 3. https://www.tutorialspoint.com/data_mining/index.htm

Dr. F.R. 21 Comban Sect., Ph.D., Departers and Comban Section According to the Comban Stution Many Comban Section According to the Comban Section According to

CO-PO Mapping

СО	POs					
	PO1	PO2	PO3	PO4	PO5	PO6
1	-	-	-	2	3	3
2	-	-	-	-	2	2
3	-	-	-	2	3	3
4	1	-	2	2	3	3
5	2	3	2	2	3	3
Avg	1.5	3	2	2	2.8	2.8

CP4094

MOBILE AND PERVASIVE COMPUTING

LTPC 3003

COURSE OBJECTIVES:

- To understand the basics of Mobile Computing and Personal Computing
- To learn the role of cellular networks in Mobile and Pervasive Computing
- To expose to the concept of sensor and mesh networks
- To expose to the context aware and wearable computing
- To learn to develop applications in mobile and pervasive computing environment

UNIT I INTRODUCTION

9

Differences between Mobile Communication and Mobile Computing – Contexts and Names – Functions – Applications and Services – New Applications – Making Legacy Applications Mobile Enabled – Design Considerations – Integration of Wireless and Wired Networks – Standards Bodies – Pervasive Computing – Basics and Vision – Principles of Pervasive Computing – Categories of Pervasive Devices

UNIT II 3G AND 4G CELLULAR NETWORKS

9

Migration to 3G Networks – IMT 2000 and UMTS – UMTS Architecture – User Equipment – Radio Network Subsystem – UTRAN – Node B – RNC functions – USIM – Protocol Stack – CS and PS Domains – IMS Architecture – Handover – 3.5G and 3.9G a brief discussion – 4G LAN and Cellular Networks – LTE – Control Plane – NAS and RRC – User Plane – PDCP, RLC and MAC – WiMax IEEE 802.16d/e – WiMax Internetworking with 3GPP

UNIT III SENSOR AND MESH NETWORKS

9

Sensor Networks – Role in Pervasive Computing – In Network Processing and Data Dissemination – Sensor Databases – Data Management in Wireless Mobile Environments – Wireless Mesh Networks – Architecture – Mesh Routers – Mesh Clients – Routing – Cross Layer Approach – Security Aspects of Various Layers in WMN – Applications of Sensor and Mesh networks

UNIT IV CONTEXT AWARE COMPUTING & WEARABLE COMPUTING

9

Adaptability – Mechanisms for Adaptation - Functionality and Data – Transcoding – Location Aware Computing – Location Representation – Localization Techniques – Triangulation and Scene

TOTAL: 45 PERIODS

REFERENCES

- 1. Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs, NiklasElmqvist, "Designing the User Interface: Strategies for Effective Human-Computer Interaction", Sixth Edition, Pearson Education, 2016.
- 2. Alan Dix, Janet Finlay, G D Abowd and Russel Beale, "Human Computer Interaction", Pearson Education, Third Edition, 2004.
- 3. Helen Sharp Jennifer Preece Yvonne Rogers, "Interaction Design: Beyond Human-Computer Interaction", Wiley, 5th Edition, 2019.
- 4. Alan Cooper, Robert Reimann, David Cronin, Christopher Noessel, "About Face: The Essentials of Interaction Design", 4th Edition, Wiley, 2014.
- 5. Donald A. Norman, "Design of Everyday Things", MIT Press, 2013.
- 6. Wilbert O Galitz, "The Essential Guide to User Interface Design", Third Edition, Wiley India Pvt., Ltd., 2007.

CO-PO Mapping

СО	POs					
	PO1	PO2	PO3	PO4	PO5	PO6
1	3	3	3	3	3	3
2	1		1	2	2	1
3	2	3	2	2	-	1
4	2	3	1	2	7 . [2
5	2	2	3	3	3	3
Avg	2	2.75	2	2.4	2.67	2

MP4251

CLOUD COMPUTING TECHNOLOGIES

LTPC

3 0 0 3

6

COURSE OBJECTIVES:

- To gain expertise in Virtualization, Virtual Machines and deploy practical virtualization solution
- To understand the architecture, infrastructure and delivery models of cloud computing.
- To explore the roster of AWS services and illustrate the way to make applications in AWS
- To gain knowledge in the working of Windows Azure and Storage services offered by Windows Azure
- To develop the cloud application using various programming model of Hadoop and Aneka

UNIT I VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE

Basics of Virtual Machines - Process Virtual Machines - System Virtual Machines - Emulation - Interpretation - Binary Translation - Taxonomy of Virtual Machines. Virtualization - Management Virtualization - Hardware Maximization - Architectures - Virtualization Management - Storage Virtualization - Network Virtualization- Implementation levels of virtualization - virtualization structure - virtualization of CPU, Memory and I/O devices - virtual clusters and Resource

Dr. F.R. 91 Process Pr

UNIT II CLOUD PLATFORM ARCHITECTURE

12

Cloud Computing: Definition, Characteristics - Cloud deployment models: public, private, hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, platform, software- A Generic Cloud Architecture Design - Layered cloud Architectural Development - Architectural Design Challenges

UNIT III AWS CLOUD PLATFORM - IAAS

9

Amazon Web Services: AWS Infrastructure- AWS API- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS Code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manager

UNIT IV PAAS CLOUD PLATFORM

9

Windows Azure: Origin of Windows Azure, Features, The Fabric Controller – First Cloud APP in Windows Azure- Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops

UNIT V PROGRAMMING MODEL

9

Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job —Developing Map Reduce Applications - Design of Hadoop file system —Setting up Hadoop Cluster- Aneka: Cloud Application Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka

COURSE OUTCOMES:

CO1: Employ the concepts of virtualization in the cloud computing

CO2: Identify the architecture, infrastructure and delivery models of cloud computing

CO3: Develop the Cloud Application in AWS platform

CO4: Apply the concepts of Windows Azure to design Cloud Application

CO5: Develop services using various Cloud computing programming models.

TOTAL: 45 PERIODS

REFERENCES

- 1. Bernard Golden, Amazon Web Service for Dummies, John Wiley & Sons, 2013.
- 2. Raoul Alongi, AWS: The Most Complete Guide to Amazon Web Service from Beginner to Advanced Level, Amazon Asia- Pacific Holdings Private Limited, 2019.
- 3. Sriram Krishnan, Programming: Windows Azure, O'Reilly,2010.
- 4. Rajkumar Buyya, Christian Vacchiola, S.Thamarai Selvi, Mastering Cloud Computing, MCGraw Hill Education (India) Pvt. Ltd., 2013.
- 5. Danielle Ruest, Nelson Ruest, —Virtualization: A Beginner"s Guidell, McGraw-Hill Osborne Media, 2009.
- 6. Jim Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.
- 7. John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation, Management, and Security", CRC Press, 2010
- 8. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical Approach", McGraw-Hill Osborne Media, 2009.

9. Tom White, "Hadoop: The Definitive Guide", Yahoo Press, 2012.

CO-PO Mapping

СО	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
1	-	-	-	2	2	1	
2	2	3	1	-	-	1	
3	3	-	3	-	1	3	
4	-	-	-	2	-	3	
5	3	2	-	-/~	-	-	
Avg	2.6	2.5	2	2	1.5	2	

BD4151

FOUNDATIONS OF DATA SCIENCE

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To apply fundamental algorithms to process data.
- Learn to apply hypotheses and data into actionable predictions.
- Document and transfer the results and effectively communicate the findings using visualization techniques.
- To learn statistical methods and machine learning algorithms required for Data Science.
- To develop the fundamental knowledge and understand concepts to become a data science professional.

UNIT I INTRODUCTION TO DATA SCIENCE

9

Data science process – roles, stages in data science project – working with data from files – working with relational databases – exploring data – managing data – cleaning and sampling for modeling and validation – introduction to NoSQL.

UNIT II MODELING METHODS

9

Choosing and evaluating models – mapping problems to machine learning, evaluating clustering models, validating models – cluster analysis – K-means algorithm, Naïve Bayes – Memorization Methods – Linear and logistic regression – unsupervised methods.

UNIT III INTRODUCTION TO R

9

Reading and getting data into R – ordered and unordered factors – arrays and matrices – lists and data frames – reading data from files – probability distributions – statistical models in R - manipulating objects – data distribution.

UNIT IV MAP REDUCE

9

Introduction – distributed file system – algorithms using map reduce, Matrix-Vector Multiplication by Map Reduce – Hadoop - Understanding the Map Reduce architecture - Writing Hadoop MapReduce Programs - Loading data into HDFS - Executing the Map phase - Shuffling and sorting - Reducing phase execution.

39